Endothelin receptor blockade decreases lung water in young rats exposed to viral infection and hypoxia.
نویسندگان
چکیده
Viral respiratory infections may increase the susceptibility of young animals to hypoxia-induced pulmonary edema. Because hypoxia stimulates endothelin production, we hypothesized that an increase in lung endothelin contributes to these alterations in lung water. Weanling rats were infected with Sendai virus, causing a mild respiratory infection. At day 7 after infection, animals were exposed to hypoxia (inspired O(2) fraction = 0.1) for 24 h. Exposure to virus plus hypoxia led to increases in lung water compared with control groups (P < 0.001). Lung endothelin levels were significantly higher in the virus plus hypoxia group than in control groups (P < 0.001). A second group of infected animals received bosentan, a nonselective endothelin receptor antagonist, during exposure to hypoxia. Bosentan-treated animals showed less lung water accumulation, less lung lavage fluid protein, and less perivascular fluid cuffing than untreated animals (P < 0.01). We conclude that the combination of a recent viral respiratory infection and exposure to moderate hypoxia led to increases in endothelin in the lungs of young rats and that endothelin receptor blockade ameliorates the hypoxia-induced increases in lung water found in these animals.
منابع مشابه
Endothelin-mediated increases in lung VEGF content promote vascular leak in young rats exposed to viral infection and hypoxia.
Viral respiratory infections increase the susceptibility of young animals to hypoxia-induced pulmonary edema formation. Previous work has shown that increased lung levels of endothelin (ET) contribute to this effect, though the mechanisms by which ET promotes vascular leak remain uncertain. Both in vitro and in vivo evidence suggests that ET can upregulate the production of VEGF, which is known...
متن کاملEphA2 receptor mediates increased vascular permeability in lung injury due to viral infection and hypoxia.
Ephrin family receptor tyrosine kinases are mediators of angiogenesis that may also regulate endothelial barrier function in the lung. Previous work has demonstrated that stimulation of EphA ephrin receptors causes increased vascular leak in the intact lung and increased permeability in cultured endothelial cells. Whether EphA receptors are involved in the permeability changes associated with l...
متن کاملViral respiratory infection increases susceptibility of young rats to hypoxia-induced pulmonary edema.
Recent clinical observations of a high incidence of preexisting respiratory infections in pediatric cases of high-altitude pulmonary edema prompted us to ask whether such infections would increase the susceptibility to hypoxia-induced pulmonary edema in young rats. We infected weanling rats with Sendai virus, thus causing a mild respiratory infection. Within 7 days of infection, Sendai virus wa...
متن کاملEndothelin B receptor deficiency predisposes to pulmonary edema formation via increased lung vascular endothelial cell growth factor expression.
Endothelin (ET) may contribute to pulmonary edema formation, particularly under hypoxic conditions, and decreases in ET-B receptor expression can lead to reduced ET clearance. ET increases vascular endothelial cell growth factor (VEGF) production in vitro, and VEGF overexpression in the lung causes pulmonary edema in vivo. We hypothesized that pulmonary vascular ET-B receptor deficiency leads t...
متن کاملEffect of Endothelin-A Receptor Blockade on the Early Phase of Ischemia/Reperfusion-Induced Acute Renal Failure in Anesthetized Rats
Background: Previous studies have shown increases in endothelin (ET) concentration of plasma and renal tissues in acute renal failure (ARF). ET has a potent vasoconstrictor effect, through binding with its ETA receptors, and may play some roles in renal hemodynamic dysfunction in ARF.Objective: To examine the beneficial effect of a selective ETA-receptor antagonist on renal dysfunction and tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 279 3 شماره
صفحات -
تاریخ انتشار 2000